Below is JSON Data for some of the sound-waves visualized above. All waves below should be wrapped in a sine wave to assure they are audible like their above representations.

[
  {
    "equation": "smoothstep(lerp(fm(55*t,261.63*t,pi),asinh(1),hypot(261.63*t,0.5)),fm(round(261.63*t),(2 * 329.63*t),min(E,1)),octave((t ^ persp((392*t / 392*t),sinc(220*t))),sinh(1)))",
    "fullEquation": "sin(2 * pi * (smoothstep(lerp(fm(55*t,261.63*t,pi),asinh(1),hypot(261.63*t,0.5)),fm(round(261.63*t),(2 * 329.63*t),min(E,1)),octave((t ^ persp((392*t / 392*t),sinc(220*t))),sinh(1)))))",
    "friendlyName": "HighPluck",
    "id": "E(27)(19)7-3:371190950:125832786842576",
    "timestamp": "2025-11-02T18:39:57.163Z",
    "depth": 4,
    "width": 14,
    "leaves": 14,
    "nodes": 26,
    "leafValues": [
      "55*t",
      "261.63*t",
      "pi",
      "1",
      "0.5",
      "2",
      "329.63*t",
      "E",
      "t",
      "persp((392*t / 392*t),sinc(220*t))"
    ],
    "nodeFunctions": [
      "asinh",
      "round",
      "sinh"
    ]
  },
  {
    "equation": "median(sum3(fm(55*t,261.63*t,pi),cosh(pi),min(261.63*t,E)),clamp(round(110*t),(2 - 329.63*t),octave(E,1)),detuneCents((t ^ persp((392*t / 392*t),sinc(220*t))),tanh(1)))",
    "fullEquation": "sin(2 * pi * (median(sum3(fm(55*t,261.63*t,pi),cosh(pi),min(261.63*t,E)),clamp(round(110*t),(2 - 329.63*t),octave(E,1)),detuneCents((t ^ persp((392*t / 392*t),sinc(220*t))),tanh(1)))))",
    "friendlyName": "ViewWhup",
    "id": "E(27)(19)7-3:371190950:125832786842576",
    "timestamp": "2025-11-02T18:39:08.665Z",
    "depth": 4,
    "width": 14,
    "leaves": 14,
    "nodes": 26,
    "leafValues": [
      "55*t",
      "261.63*t",
      "pi",
      "E",
      "110*t",
      "2",
      "329.63*t",
      "1",
      "t",
      "persp((392*t / 392*t),sinc(220*t))"
    ],
    "nodeFunctions": [
      "cosh",
      "round",
      "tanh"
    ]
  },
  {
    "equation": "lerp(median(smoothstep(329.63*t,E,persp((392*t / 392*t),sinc(220*t))),softplus(cos(sum3(880*t,261.63*t,110*t))),logNeutral(220*t,110*t)),median(log(55*t),detuneCents(55*t,logNeutral((pi % 392*t),fract(55*t))),safeDiv(1,persp((392*t / 392*t),sinc(220*t)))),octave((0.5 % 1),cos(1)))",
    "fullEquation": "sin(2 * pi * (lerp(median(smoothstep(329.63*t,E,persp((392*t / 392*t),sinc(220*t))),softplus(cos(sum3(880*t,261.63*t,110*t))),logNeutral(220*t,110*t)),median(log(55*t),detuneCents(55*t,logNeutral((pi % 392*t),fract(55*t))),safeDiv(1,persp((392*t / 392*t),sinc(220*t)))),octave((0.5 % 1),cos(1)))))",
    "friendlyName": "",
    "id": "E(27)(19)7-3:371190950:168553241877297",
    "timestamp": "2025-11-02T18:38:43.239Z",
    "depth": 4,
    "width": 14,
    "leaves": 14,
    "nodes": 26,
    "leafValues": [
      "329.63*t",
      "E",
      "persp((392*t / 392*t),sinc(220*t))",
      "cos(sum3(880*t,261.63*t,110*t))",
      "220*t",
      "110*t",
      "55*t",
      "logNeutral((pi % 392*t),fract(55*t))",
      "1",
      "0.5"
    ],
    "nodeFunctions": [
      "softplus",
      "log",
      "cos"
    ]
  },
  {
    "equation": "smoothstep(wrap(lerp(110*t,2,220*t),cos(55*t),(t / persp((392*t / 392*t),sinc(220*t)))),smoothstep(sinh(cos(sum3(880*t,261.63*t,110*t))),detuneCents(1,2),hypot(pi,329.63*t)),(powSigned(persp((392*t / 392*t),sinc(220*t)),261.63*t) / round(110*t)))",
    "fullEquation": "sin(2 * pi * (smoothstep(wrap(lerp(110*t,2,220*t),cos(55*t),(t / persp((392*t / 392*t),sinc(220*t)))),smoothstep(sinh(cos(sum3(880*t,261.63*t,110*t))),detuneCents(1,2),hypot(pi,329.63*t)),(powSigned(persp((392*t / 392*t),sinc(220*t)),261.63*t) / round(110*t)))))",
    "friendlyName": "",
    "id": "E(27)(19)7-3:371190950:175624466424351",
    "timestamp": "2025-11-02T18:38:00.604Z",
    "depth": 4,
    "width": 14,
    "leaves": 14,
    "nodes": 26,
    "leafValues": [
      "110*t",
      "2",
      "220*t",
      "55*t",
      "t",
      "persp((392*t / 392*t),sinc(220*t))",
      "cos(sum3(880*t,261.63*t,110*t))",
      "1",
      "pi",
      "329.63*t",
      "261.63*t"
    ],
    "nodeFunctions": [
      "cos",
      "sinh",
      "round"
    ]
  },
  {
    "equation": "(floor(329.63*t) ^ atan2(880*t,880*t))",
    "fullEquation": "sin(2 * pi * ((floor(329.63*t) ^ atan2(880*t,880*t))))",
    "friendlyName": "BuuuhhWummmEee",
    "id": "E(27)(19)7-2:111:1410191087",
    "timestamp": "2025-11-02T18:34:25.125Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "329.63*t",
      "880*t"
    ],
    "nodeFunctions": [
      "floor"
    ]
  },
  {
    "equation": "softplus(clamp(fm(t,persp((392*t / 392*t),sinc(220*t)),880*t),sum3(880*t,55*t,logNeutral((pi % 392*t),fract(55*t))),detuneCents(329.63*t,persp((392*t / 392*t),sinc(220*t)))))",
    "fullEquation": "sin(2 * pi * (softplus(clamp(fm(t,persp((392*t / 392*t),sinc(220*t)),880*t),sum3(880*t,55*t,logNeutral((pi % 392*t),fract(55*t))),detuneCents(329.63*t,persp((392*t / 392*t),sinc(220*t)))))))",
    "friendlyName": "HighPitched Bowawawaaahuh",
    "id": "E(27)(19)7-3:728:3301191936",
    "timestamp": "2025-11-02T18:15:03.973Z",
    "depth": 4,
    "width": 8,
    "leaves": 8,
    "nodes": 13,
    "leafValues": [
      "t",
      "persp((392*t / 392*t),sinc(220*t))",
      "880*t",
      "55*t",
      "logNeutral((pi % 392*t),fract(55*t))",
      "329.63*t"
    ],
    "nodeFunctions": [
      "softplus"
    ]
  },
  {
    "equation": "sinh(smoothstep(fm(55*t,logNeutral((pi % 392*t),fract(55*t)),329.63*t),wrap(55*t,0.5,880*t),(329.63*t ^ persp((392*t / 392*t),sinc(220*t)))))",
    "fullEquation": "sin(2 * pi * (sinh(smoothstep(fm(55*t,logNeutral((pi % 392*t),fract(55*t)),329.63*t),wrap(55*t,0.5,880*t),(329.63*t ^ persp((392*t / 392*t),sinc(220*t)))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-3:728:3301191936",
    "timestamp": "2025-11-02T18:14:00.628Z",
    "depth": 4,
    "width": 8,
    "leaves": 8,
    "nodes": 13,
    "leafValues": [
      "55*t",
      "logNeutral((pi % 392*t),fract(55*t))",
      "329.63*t",
      "0.5",
      "880*t",
      "persp((392*t / 392*t),sinc(220*t))"
    ],
    "nodeFunctions": [
      "sinh"
    ]
  },
  {
    "equation": "tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(smoothstep(880*t,persp((392*t / 329.63*t),safeLog(220*t)),392*t))) + clamp(pi,0.5,xpose(atan2(392*t,261.63*t),floor(55*t)))))",
    "fullEquation": "sin(2 * pi * (tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(smoothstep(880*t,persp((392*t / 329.63*t),safeLog(220*t)),392*t))) + clamp(pi,0.5,xpose(atan2(392*t,261.63*t),floor(55*t)))))))",
    "friendlyName": "Buhbuh",
    "id": "E(27)(19)7-3:8:1000",
    "timestamp": "2025-11-02T18:11:46.292Z",
    "depth": 9,
    "width": 8,
    "leaves": 15,
    "nodes": 34,
    "leafValues": [
      "pi",
      "0.5",
      "880*t",
      "392*t",
      "261.63*t",
      "55*t",
      "E",
      "440*t",
      "t",
      "329.63*t",
      "220*t"
    ],
    "nodeFunctions": [
      "tan",
      "sqrt",
      "cos",
      "floor",
      "softplus",
      "safeLog",
      "sinc"
    ]
  },
  {
    "equation": "tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(sum3(880*t,261.63*t,110*t))) + clamp(pi,0.5,2)))",
    "fullEquation": "sin(2 * pi * (tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(sum3(880*t,261.63*t,110*t))) + clamp(pi,0.5,2)))))",
    "friendlyName": "PungWaaaahhhh",
    "id": "E(27)(19)7-3:8:1000",
    "timestamp": "2025-11-02T18:09:49.001Z",
    "depth": 4,
    "width": 5,
    "leaves": 5,
    "nodes": 9,
    "leafValues": [
      "sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t))))",
      "cos(sum3(880*t,261.63*t,110*t))",
      "pi",
      "0.5",
      "2"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(sum3(880*t,261.63*t,110*t))) + clamp(abs(cos(softplus(xpose(logNeutral((pi % 392*t),fract(55*t)),110*t)))),t,sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))))))",
    "fullEquation": "sin(2 * pi * (tan((atan2(sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))),cos(sum3(880*t,261.63*t,110*t))) + clamp(abs(cos(softplus(xpose(logNeutral((pi % 392*t),fract(55*t)),110*t)))),t,sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t)))))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-3:8:1000",
    "timestamp": "2025-11-02T18:09:34.047Z",
    "depth": 4,
    "width": 5,
    "leaves": 5,
    "nodes": 9,
    "leafValues": [
      "sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t))))",
      "cos(sum3(880*t,261.63*t,110*t))",
      "abs(cos(softplus(xpose(logNeutral((pi % 392*t),fract(55*t)),110*t))))",
      "t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "tan(lerp(t,persp((392*t / 392*t),sinc(220*t)),persp((392*t / 392*t),sinc(220*t))))",
    "fullEquation": "sin(2 * pi * (tan(lerp(t,persp((392*t / 392*t),sinc(220*t)),persp((392*t / 392*t),sinc(220*t))))))",
    "friendlyName": "Garble&Wum",
    "id": "E(27)(19)7-2:8:1117567664",
    "timestamp": "2025-11-02T16:56:49.102Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 5,
    "leafValues": [
      "t",
      "persp((392*t / 392*t),sinc(220*t))"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "cos(sum3(880*t,261.63*t,110*t))",
    "fullEquation": "sin(2 * pi * (cos(sum3(880*t,261.63*t,110*t))))",
    "friendlyName": "PrettyLooking",
    "id": "E(27)(19)7-2:8:1117567552",
    "timestamp": "2025-11-02T16:55:56.973Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 5,
    "leafValues": [
      "880*t",
      "261.63*t",
      "110*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "acosh(fm(880*t,880*t,220*t))",
    "fullEquation": "sin(2 * pi * (acosh(fm(880*t,880*t,220*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:8:142272973",
    "timestamp": "2025-11-02T16:52:42.694Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 5,
    "leafValues": [
      "880*t",
      "220*t"
    ],
    "nodeFunctions": [
      "acosh"
    ]
  },
  {
    "equation": "fract(fm(E,261.63*t,t))",
    "fullEquation": "sin(2 * pi * (fract(fm(E,261.63*t,t))))",
    "friendlyName": "Whoooraaaaang",
    "id": "E(27)(19)7-2:8:449988684",
    "timestamp": "2025-11-02T16:51:11.469Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 5,
    "leafValues": [
      "E",
      "261.63*t",
      "t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "sinc((cos((110*t * 0.5)) / (t ^ (sinc(880*t) * 440*t))))",
    "fullEquation": "sin(2 * pi * (sinc((cos((110*t * 0.5)) / (t ^ (sinc(880*t) * 440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:44:41.415Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "t",
      "110*t",
      "0.5",
      "440*t",
      "880*t"
    ],
    "nodeFunctions": [
      "sinc",
      "cos"
    ]
  },
  {
    "equation": "sinc((cos((110*t * t)) / (t ^ (sinc(880*t) * 440*t))))",
    "fullEquation": "sin(2 * pi * (sinc((cos((110*t * t)) / (t ^ (sinc(880*t) * 440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:44:36.015Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "t",
      "110*t",
      "440*t",
      "880*t"
    ],
    "nodeFunctions": [
      "sinc",
      "cos"
    ]
  },
  {
    "equation": "sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t))))",
    "fullEquation": "sin(2 * pi * (sqrt(xpose(softplus((440*t - t)),min(E,xpose(sinc(880*t),440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:43:45.801Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "E",
      "440*t",
      "t",
      "880*t"
    ],
    "nodeFunctions": [
      "sqrt",
      "softplus",
      "sinc"
    ]
  },
  {
    "equation": "sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(880*t),440*t))))",
    "fullEquation": "sin(2 * pi * (sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(880*t),440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:43:24.168Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "E",
      "0.5",
      "440*t",
      "880*t"
    ],
    "nodeFunctions": [
      "sqrt",
      "sigmoid",
      "sinc"
    ]
  },
  {
    "equation": "sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(392*t),440*t))))",
    "fullEquation": "sin(2 * pi * (sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(392*t),440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:43:18.921Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "E",
      "0.5",
      "440*t",
      "392*t"
    ],
    "nodeFunctions": [
      "sqrt",
      "sigmoid",
      "sinc"
    ]
  },
  {
    "equation": "sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(55*t),440*t))))",
    "fullEquation": "sin(2 * pi * (sqrt(xpose(sigmoid((E - 0.5)),min(E,xpose(sinc(55*t),440*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:43:10.002Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 12,
    "leafValues": [
      "E",
      "0.5",
      "440*t",
      "55*t"
    ],
    "nodeFunctions": [
      "sqrt",
      "sigmoid",
      "sinc"
    ]
  },
  {
    "equation": "tan((cosh(logNeutral(logNeutral((pi % 392*t),fract(55*t)),t)) + (1 + E)))",
    "fullEquation": "sin(2 * pi * (tan((cosh(logNeutral(logNeutral((pi % 392*t),fract(55*t)),t)) + (1 + E)))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:41:14.065Z",
    "depth": 5,
    "width": 3,
    "leaves": 4,
    "nodes": 9,
    "leafValues": [
      "1",
      "E",
      "logNeutral((pi % 392*t),fract(55*t))",
      "t"
    ],
    "nodeFunctions": [
      "tan",
      "cosh"
    ]
  },
  {
    "equation": "tan((cosh(logNeutral(logNeutral((pi % 392*t),fract(55*t)),t)) + (E + t)))",
    "fullEquation": "sin(2 * pi * (tan((cosh(logNeutral(logNeutral((pi % 392*t),fract(55*t)),t)) + (E + t)))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:40:55.950Z",
    "depth": 5,
    "width": 3,
    "leaves": 4,
    "nodes": 9,
    "leafValues": [
      "E",
      "t",
      "logNeutral((pi % 392*t),fract(55*t))"
    ],
    "nodeFunctions": [
      "tan",
      "cosh"
    ]
  },
  {
    "equation": "abs(cos(softplus(xpose(logNeutral((pi % 392*t),fract(55*t)),110*t))))",
    "fullEquation": "sin(2 * pi * (abs(cos(softplus(xpose(logNeutral((pi % 392*t),fract(55*t)),110*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:38:03.089Z",
    "depth": 5,
    "width": 2,
    "leaves": 2,
    "nodes": 6,
    "leafValues": [
      "logNeutral((pi % 392*t),fract(55*t))",
      "110*t"
    ],
    "nodeFunctions": [
      "abs",
      "cos",
      "softplus"
    ]
  },
  {
    "equation": "abs(cos(softplus((logNeutral((pi % 392*t),fract(55*t)) % 110*t))))",
    "fullEquation": "sin(2 * pi * (abs(cos(softplus((logNeutral((pi % 392*t),fract(55*t)) % 110*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:37:31.459Z",
    "depth": 5,
    "width": 2,
    "leaves": 2,
    "nodes": 6,
    "leafValues": [
      "logNeutral((pi % 392*t),fract(55*t))",
      "110*t"
    ],
    "nodeFunctions": [
      "abs",
      "cos",
      "softplus"
    ]
  },
  {
    "equation": "sin(softplus(log1p(octave(logNeutral((pi % 392*t),fract(55*t)),110*t))))",
    "fullEquation": "sin(2 * pi * (sin(softplus(log1p(octave(logNeutral((pi % 392*t),fract(55*t)),110*t))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-4:8:2",
    "timestamp": "2025-11-02T16:25:34.290Z",
    "depth": 5,
    "width": 2,
    "leaves": 2,
    "nodes": 6,
    "leafValues": [
      "logNeutral((pi % 392*t),fract(55*t))",
      "110*t"
    ],
    "nodeFunctions": [
      "sin",
      "softplus",
      "log1p"
    ]
  },
  {
    "equation": "octave(fract(55*t),0.5)",
    "fullEquation": "sin(2 * pi * (octave(fract(55*t),0.5)))",
    "friendlyName": "Bwummmmm",
    "id": "E(27)(19)7-2:49:809427365",
    "timestamp": "2025-11-02T15:52:34.344Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 4,
    "leafValues": [
      "0.5",
      "55*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "max(sin(55*t),t)",
    "fullEquation": "sin(2 * pi * (max(sin(55*t),t)))",
    "friendlyName": "Crudrumble",
    "id": "E(27)(19)7-2:49:3140992775",
    "timestamp": "2025-11-02T15:50:11.006Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 4,
    "leafValues": [
      "t",
      "55*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "powSigned(nroot(2,220*t),cos(880*t))",
    "fullEquation": "sin(2 * pi * (powSigned(nroot(2,220*t),cos(880*t))))",
    "friendlyName": "MediumPung",
    "id": "E(27)(19)7-2:59:1746318638",
    "timestamp": "2025-11-02T15:42:13.328Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "220*t",
      "880*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "((E % 329.63*t) + sin(440*t))",
    "fullEquation": "sin(2 * pi * (((E % 329.63*t) + sin(440*t))))",
    "friendlyName": "Bwowawawawawa",
    "id": "E(27)(19)7-2:59:1202237100",
    "timestamp": "2025-11-02T15:41:52.213Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "E",
      "329.63*t",
      "440*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "logNeutral((pi % 392*t),fract(55*t))",
    "fullEquation": "sin(2 * pi * (logNeutral((pi % 392*t),fract(55*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:59:1186366351",
    "timestamp": "2025-11-02T15:40:59.990Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "392*t",
      "55*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "logNeutral(min(pi,2),sin(110*t))",
    "fullEquation": "sin(2 * pi * (logNeutral(min(pi,2),sin(110*t))))",
    "friendlyName": "FastWarble",
    "id": "E(27)(19)7-2:59:1186366285",
    "timestamp": "2025-11-02T15:40:33.694Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "2",
      "110*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "logNeutral((t / 110*t),sin(220*t))",
    "fullEquation": "sin(2 * pi * (logNeutral((t / 110*t),sin(220*t))))",
    "friendlyName": "WrowhhhhhhhhHHhhh",
    "id": "E(27)(19)7-2:59:1186366250",
    "timestamp": "2025-11-02T15:39:56.227Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "110*t",
      "220*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "persp((392*t / 392*t),sinc(220*t))",
    "fullEquation": "sin(2 * pi * (persp((392*t / 392*t),sinc(220*t))))",
    "friendlyName": "Hurrup",
    "id": "E(27)(19)7-2:59:1186366125",
    "timestamp": "2025-11-02T15:38:46.458Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "220*t"
    ],
    "nodeFunctions": [
      "sinc"
    ]
  },
  {
    "equation": "persp((329.63*t % 0.5),tan(110*t))",
    "fullEquation": "sin(2 * pi * (persp((329.63*t % 0.5),tan(110*t))))",
    "friendlyName": "BwoyBwoyBwoyBwoy",
    "id": "E(27)(19)7-2:59:1186366101",
    "timestamp": "2025-11-02T15:38:22.673Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "329.63*t",
      "0.5",
      "110*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "persp((880*t % 0.5),lambertW(880*t))",
    "fullEquation": "sin(2 * pi * (persp((880*t % 0.5),lambertW(880*t))))",
    "friendlyName": "puhTwtTwtTwt",
    "id": "E(27)(19)7-2:59:1186366037",
    "timestamp": "2025-11-02T15:37:45.220Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "880*t",
      "0.5"
    ],
    "nodeFunctions": [
      "lambertW"
    ]
  },
  {
    "equation": "persp(powSigned(t,55*t),sinc(440*t))",
    "fullEquation": "sin(2 * pi * (persp(powSigned(t,55*t),sinc(440*t))))",
    "friendlyName": "Buh..Wuhzoop.",
    "id": "E(27)(19)7-2:59:1186365874",
    "timestamp": "2025-11-02T15:36:39.272Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "55*t",
      "440*t"
    ],
    "nodeFunctions": [
      "sinc"
    ]
  },
  {
    "equation": "nroot(max(392*t,55*t),tan(55*t))",
    "fullEquation": "sin(2 * pi * (nroot(max(392*t,55*t),tan(55*t))))",
    "friendlyName": "PftPftPftPftPftPftPftPft",
    "id": "E(27)(19)7-2:59:1142295967",
    "timestamp": "2025-11-02T15:36:08.559Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "55*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "nroot(nroot(pi,329.63*t),cos(110*t))",
    "fullEquation": "sin(2 * pi * (nroot(nroot(pi,329.63*t),cos(110*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:59:1142295951",
    "timestamp": "2025-11-02T15:35:56.362Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "329.63*t",
      "110*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "nroot(xpose(t,E),sin(220*t))",
    "fullEquation": "sin(2 * pi * (nroot(xpose(t,E),sin(220*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:59:1142295916",
    "timestamp": "2025-11-02T15:35:39.106Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "E",
      "220*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "nroot((t * 392*t),sinc(220*t))",
    "fullEquation": "sin(2 * pi * (nroot((t * 392*t),sinc(220*t))))",
    "friendlyName": "ShortFlutter",
    "id": "E(27)(19)7-2:59:1142295883",
    "timestamp": "2025-11-02T15:35:15.572Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "392*t",
      "220*t"
    ],
    "nodeFunctions": [
      "sinc"
    ]
  },
  {
    "equation": "nroot(powSigned(261.63*t,55*t),ceil(110*t))",
    "fullEquation": "sin(2 * pi * (nroot(powSigned(261.63*t,55*t),ceil(110*t))))",
    "friendlyName": "LayeredWave",
    "id": "E(27)(19)7-2:59:1142295809",
    "timestamp": "2025-11-02T15:34:34.767Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "261.63*t",
      "55*t",
      "110*t"
    ],
    "nodeFunctions": [
      "ceil"
    ]
  },
  {
    "equation": "logNeutral((220*t ^ 392*t),cos(261.63*t))",
    "fullEquation": "sin(2 * pi * (logNeutral((220*t ^ 392*t),cos(261.63*t))))",
    "friendlyName": "BwaaahShhhhhh",
    "id": "E(27)(19)7-2:59:1142295484",
    "timestamp": "2025-11-02T15:32:36.533Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "392*t",
      "261.63*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "logNeutral(max(t,t),fract(880*t))",
    "fullEquation": "sin(2 * pi * (logNeutral(max(t,t),fract(880*t))))",
    "friendlyName": "Pwowowowoaaaaa",
    "id": "E(27)(19)7-2:59:1142295461",
    "timestamp": "2025-11-02T15:32:13.325Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "880*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "persp((220*t + 220*t),floor(392*t))",
    "fullEquation": "sin(2 * pi * (persp((220*t + 220*t),floor(392*t))))",
    "friendlyName": "BUhwuhhhhhh",
    "id": "E(27)(19)7-2:59:1142295218",
    "timestamp": "2025-11-02T15:30:58.713Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "392*t"
    ],
    "nodeFunctions": [
      "floor"
    ]
  },
  {
    "equation": "((2 ^ 880*t) + abs(pi))",
    "fullEquation": "sin(2 * pi * (((2 ^ 880*t) + abs(pi))))",
    "friendlyName": "ElectricChimes",
    "id": "E(27)(19)7-2:59:1109138482",
    "timestamp": "2025-11-02T15:30:41.389Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "880*t",
      "pi"
    ],
    "nodeFunctions": [
      "abs"
    ]
  },
  {
    "equation": "xpose((2 * 440*t),sinc(110*t))",
    "fullEquation": "sin(2 * pi * (xpose((2 * 440*t),sinc(110*t))))",
    "friendlyName": "OldTeleringer",
    "id": "E(27)(19)7-2:59:1109137686",
    "timestamp": "2025-11-02T15:27:04.732Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "440*t",
      "110*t"
    ],
    "nodeFunctions": [
      "sinc"
    ]
  },
  {
    "equation": "xpose(atan2(392*t,110*t),floor(55*t))",
    "fullEquation": "sin(2 * pi * (xpose(atan2(392*t,110*t),floor(55*t))))",
    "friendlyName": "ChaoticMotor",
    "id": "E(27)(19)7-2:59:1109137685",
    "timestamp": "2025-11-02T15:26:54.425Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "110*t",
      "55*t"
    ],
    "nodeFunctions": [
      "floor"
    ]
  },
  {
    "equation": "xpose(detuneCents(0.5,880*t),sin(440*t))",
    "fullEquation": "sin(2 * pi * (xpose(detuneCents(0.5,880*t),sin(440*t))))",
    "friendlyName": "AiryPwoooOOOah",
    "id": "E(27)(19)7-2:59:1109137684",
    "timestamp": "2025-11-02T15:26:38.544Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "0.5",
      "880*t",
      "440*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "xpose((220*t / 329.63*t),fract(55*t))",
    "fullEquation": "sin(2 * pi * (xpose((220*t / 329.63*t),fract(55*t))))",
    "friendlyName": "IncreasingZips",
    "id": "E(27)(19)7-2:59:1109137677",
    "timestamp": "2025-11-02T15:26:10.883Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "329.63*t",
      "55*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "xpose(hypot(55*t,220*t),fract(110*t))",
    "fullEquation": "sin(2 * pi * (xpose(hypot(55*t,220*t),fract(110*t))))",
    "friendlyName": "Bwangughughughugh",
    "id": "E(27)(19)7-2:59:1109137569",
    "timestamp": "2025-11-02T15:25:15.838Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "55*t",
      "220*t",
      "110*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "safeDiv(octave(pi,E),fract(t))",
    "fullEquation": "sin(2 * pi * (safeDiv(octave(pi,E),fract(t))))",
    "friendlyName": "2 Phase Shots",
    "id": "E(27)(19)7-2:59:1109137480",
    "timestamp": "2025-11-02T15:24:32.777Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "E",
      "t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "safeDiv(min(220*t,0.5),sin(55*t))",
    "fullEquation": "sin(2 * pi * (safeDiv(min(220*t,0.5),sin(55*t))))",
    "friendlyName": "Helicopter",
    "id": "E(27)(19)7-2:59:1109137468",
    "timestamp": "2025-11-02T15:24:10.496Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "0.5",
      "55*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "safeDiv((E ^ 329.63*t),softplus(55*t))",
    "fullEquation": "sin(2 * pi * (safeDiv((E ^ 329.63*t),softplus(55*t))))",
    "friendlyName": "PwshIntoElectricComputer",
    "id": "E(27)(19)7-2:59:1109137293",
    "timestamp": "2025-11-02T15:23:02.747Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "E",
      "329.63*t",
      "55*t"
    ],
    "nodeFunctions": [
      "softplus"
    ]
  },
  {
    "equation": "safeDiv(powSigned(t,pi),cos(880*t))",
    "fullEquation": "sin(2 * pi * (safeDiv(powSigned(t,pi),cos(880*t))))",
    "friendlyName": "RapidAccelPhasing",
    "id": "E(27)(19)7-2:59:1109137179",
    "timestamp": "2025-11-02T15:21:59.566Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "pi",
      "880*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "safeDiv(atan2(2,220*t),fract(880*t))",
    "fullEquation": "sin(2 * pi * (safeDiv(atan2(2,220*t),fract(880*t))))",
    "friendlyName": "PWNGuNGnGnGnG",
    "id": "E(27)(19)7-2:59:1109137121",
    "timestamp": "2025-11-02T15:20:15.779Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "220*t",
      "880*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "safeDiv(ratio(E,220*t),sinc(t))",
    "fullEquation": "sin(2 * pi * (safeDiv(ratio(E,220*t),sinc(t))))",
    "friendlyName": "bwaaaAAAAWWEEEP",
    "id": "E(27)(19)7-2:59:1109137038",
    "timestamp": "2025-11-02T15:19:30.013Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "E",
      "220*t",
      "t"
    ],
    "nodeFunctions": [
      "sinc"
    ]
  },
  {
    "equation": "safeDiv((880*t % 55*t),round(220*t))",
    "fullEquation": "sin(2 * pi * (safeDiv((880*t % 55*t),round(220*t))))",
    "friendlyName": "Buwuhwuhwuhwuhwuhwuhwuh",
    "id": "E(27)(19)7-2:59:1109137034",
    "timestamp": "2025-11-02T15:19:05.701Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "880*t",
      "55*t",
      "220*t"
    ],
    "nodeFunctions": [
      "round"
    ]
  },
  {
    "equation": "safeDiv(min(55*t,261.63*t),sigmoid(55*t))",
    "fullEquation": "sin(2 * pi * (safeDiv(min(55*t,261.63*t),sigmoid(55*t))))",
    "friendlyName": "LowHumm",
    "id": "E(27)(19)7-2:59:1109137026",
    "timestamp": "2025-11-02T15:18:46.096Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "55*t",
      "261.63*t"
    ],
    "nodeFunctions": [
      "sigmoid"
    ]
  },
  {
    "equation": "safeDiv((392*t + pi),floor(t))",
    "fullEquation": "sin(2 * pi * (safeDiv((392*t + pi),floor(t))))",
    "friendlyName": "PWEEEEEoooop",
    "id": "E(27)(19)7-2:59:1109137021",
    "timestamp": "2025-11-02T15:18:25.723Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "pi",
      "t"
    ],
    "nodeFunctions": [
      "floor"
    ]
  },
  {
    "equation": "safeDiv((1 + 392*t),ceil(110*t))",
    "fullEquation": "sin(2 * pi * (safeDiv((1 + 392*t),ceil(110*t))))",
    "friendlyName": "DoorStopperSpring",
    "id": "E(27)(19)7-2:59:1109137018",
    "timestamp": "2025-11-02T15:18:12.561Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "1",
      "392*t",
      "110*t"
    ],
    "nodeFunctions": [
      "ceil"
    ]
  },
  {
    "equation": "powSigned(detuneCents(E,329.63*t),sin(392*t))",
    "fullEquation": "sin(2 * pi * (powSigned(detuneCents(E,329.63*t),sin(392*t))))",
    "friendlyName": "Bruhhhhhhhhhngh",
    "id": "E(27)(19)7-2:59:1109136928",
    "timestamp": "2025-11-02T15:17:19.236Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "E",
      "329.63*t",
      "392*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "powSigned(powSigned(pi,0.5),round(55*t))",
    "fullEquation": "sin(2 * pi * (powSigned(powSigned(pi,0.5),round(55*t))))",
    "friendlyName": "RegularChaos",
    "id": "E(27)(19)7-2:59:1109136926",
    "timestamp": "2025-11-02T15:17:05.815Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "0.5",
      "55*t"
    ],
    "nodeFunctions": [
      "round"
    ]
  },
  {
    "equation": "powSigned(ratio(pi,261.63*t),log(2))",
    "fullEquation": "sin(2 * pi * (powSigned(ratio(pi,261.63*t),log(2))))",
    "friendlyName": "DownPhaser",
    "id": "E(27)(19)7-2:59:1109136849",
    "timestamp": "2025-11-02T15:16:17.344Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "261.63*t",
      "2"
    ],
    "nodeFunctions": [
      "log"
    ]
  },
  {
    "equation": "powSigned(xpose(2,pi),acosh(329.63*t))",
    "fullEquation": "sin(2 * pi * (powSigned(xpose(2,pi),acosh(329.63*t))))",
    "friendlyName": "Bwooowwwwwwwuh",
    "id": "E(27)(19)7-2:59:1109136844",
    "timestamp": "2025-11-02T15:15:42.048Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "pi",
      "329.63*t"
    ],
    "nodeFunctions": [
      "acosh"
    ]
  },
  {
    "equation": "powSigned(persp(t,1),cos(329.63*t))",
    "fullEquation": "sin(2 * pi * (powSigned(persp(t,1),cos(329.63*t))))",
    "friendlyName": "DwowaaWowwa",
    "id": "E(27)(19)7-2:59:1109136836",
    "timestamp": "2025-11-02T15:15:13.672Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "1",
      "329.63*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "powSigned((261.63*t * 1),gamma(392*t))",
    "fullEquation": "sin(2 * pi * (powSigned((261.63*t * 1),gamma(392*t))))",
    "friendlyName": "tut",
    "id": "E(27)(19)7-2:59:1109136753",
    "timestamp": "2025-11-02T15:14:00.837Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "261.63*t",
      "1",
      "392*t"
    ],
    "nodeFunctions": [
      "gamma"
    ]
  },
  {
    "equation": "powSigned(nroot(110*t,329.63*t),floor(110*t))",
    "fullEquation": "sin(2 * pi * (powSigned(nroot(110*t,329.63*t),floor(110*t))))",
    "friendlyName": "BuhWuhWuuhWuuhWuuuh",
    "id": "E(27)(19)7-2:59:1109136751",
    "timestamp": "2025-11-02T15:13:32.905Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "110*t",
      "329.63*t"
    ],
    "nodeFunctions": [
      "floor"
    ]
  },
  {
    "equation": "powSigned((pi * pi),sin(220*t))",
    "fullEquation": "sin(2 * pi * (powSigned((pi * pi),sin(220*t))))",
    "friendlyName": "R-Motor",
    "id": "E(27)(19)7-2:59:1109136750",
    "timestamp": "2025-11-02T15:13:20.351Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "220*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "powSigned(detuneCents(1,55*t),tan(880*t))",
    "fullEquation": "sin(2 * pi * (powSigned(detuneCents(1,55*t),tan(880*t))))",
    "friendlyName": "ZshhhShredder",
    "id": "E(27)(19)7-2:59:1109136620",
    "timestamp": "2025-11-02T15:12:07.058Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "1",
      "55*t",
      "880*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "powSigned((392*t + 220*t),log(t))",
    "fullEquation": "sin(2 * pi * (powSigned((392*t + 220*t),log(t))))",
    "friendlyName": "End WoOOOP",
    "id": "E(27)(19)7-2:59:1109136579",
    "timestamp": "2025-11-02T15:11:28.191Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "220*t",
      "t"
    ],
    "nodeFunctions": [
      "log"
    ]
  },
  {
    "equation": "powSigned((2 % 440*t),sin(110*t))",
    "fullEquation": "sin(2 * pi * (powSigned((2 % 440*t),sin(110*t))))",
    "friendlyName": "Bwung...bwoWuhuhuhuh",
    "id": "E(27)(19)7-2:59:1109136534",
    "timestamp": "2025-11-02T15:09:52.211Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "440*t",
      "110*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "powSigned(hypot(0.5,2),safeLog(392*t))",
    "fullEquation": "sin(2 * pi * (powSigned(hypot(0.5,2),safeLog(392*t))))",
    "friendlyName": "NiceThumbDown",
    "id": "E(27)(19)7-2:59:1109136444",
    "timestamp": "2025-11-02T15:08:35.161Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "0.5",
      "2",
      "392*t"
    ],
    "nodeFunctions": [
      "safeLog"
    ]
  },
  {
    "equation": "powSigned((1 - 392*t),cos(55*t))",
    "fullEquation": "sin(2 * pi * (powSigned((1 - 392*t),cos(55*t))))",
    "friendlyName": "Bwyheheeheheh",
    "id": "E(27)(19)7-2:59:1109136442",
    "timestamp": "2025-11-02T15:08:07.360Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "1",
      "392*t",
      "55*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "atan2(octave(110*t,t),fract(392*t))",
    "fullEquation": "sin(2 * pi * (atan2(octave(110*t,t),fract(392*t))))",
    "friendlyName": "Pwinggggggg",
    "id": "E(27)(19)7-2:59:1109136419",
    "timestamp": "2025-11-02T15:07:39.695Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "110*t",
      "t",
      "392*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "atan2((55*t ^ t),round(261.63*t))",
    "fullEquation": "sin(2 * pi * (atan2((55*t ^ t),round(261.63*t))))",
    "friendlyName": "BwuhzUhhhh",
    "id": "E(27)(19)7-2:59:1109136351",
    "timestamp": "2025-11-02T15:06:34.861Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "55*t",
      "t",
      "261.63*t"
    ],
    "nodeFunctions": [
      "round"
    ]
  },
  {
    "equation": "atan2(safeDiv(t,0.5),tan(55*t))",
    "fullEquation": "sin(2 * pi * (atan2(safeDiv(t,0.5),tan(55*t))))",
    "friendlyName": "Bwowuhuhuhuh",
    "id": "E(27)(19)7-2:59:1109136350",
    "timestamp": "2025-11-02T15:06:09.884Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "0.5",
      "55*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "atan2(xpose(392*t,0.5),ceil(329.63*t))",
    "fullEquation": "sin(2 * pi * (atan2(xpose(392*t,0.5),ceil(329.63*t))))",
    "friendlyName": "Twungggg",
    "id": "E(27)(19)7-2:59:1109136335",
    "timestamp": "2025-11-02T15:05:50.145Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "0.5",
      "329.63*t"
    ],
    "nodeFunctions": [
      "ceil"
    ]
  },
  {
    "equation": "atan2(min(0.5,55*t),cos(110*t))",
    "fullEquation": "sin(2 * pi * (atan2(min(0.5,55*t),cos(110*t))))",
    "friendlyName": "LowMotor",
    "id": "E(27)(19)7-2:59:1109136334",
    "timestamp": "2025-11-02T15:05:38.200Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "0.5",
      "55*t",
      "110*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "atan2((1 / 392*t),sin(440*t))",
    "fullEquation": "sin(2 * pi * (atan2((1 / 392*t),sin(440*t))))",
    "friendlyName": "Bwahzhzhzhzhz",
    "id": "E(27)(19)7-2:59:1109136299",
    "timestamp": "2025-11-02T15:05:08.771Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "1",
      "392*t",
      "440*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "atan2((110*t % 110*t),tan(880*t))",
    "fullEquation": "sin(2 * pi * (atan2((110*t % 110*t),tan(880*t))))",
    "friendlyName": "TwanGGGGGG",
    "id": "E(27)(19)7-2:59:1109136153",
    "timestamp": "2025-11-02T15:03:41.563Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "110*t",
      "880*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "atan2(safeDiv(55*t,880*t),cos(110*t))",
    "fullEquation": "sin(2 * pi * (atan2(safeDiv(55*t,880*t),cos(110*t))))",
    "friendlyName": "Motor",
    "id": "E(27)(19)7-2:59:1109135975",
    "timestamp": "2025-11-02T15:02:03.064Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "55*t",
      "880*t",
      "110*t"
    ],
    "nodeFunctions": [
      "cos"
    ]
  },
  {
    "equation": "atan2(hypot(pi,880*t),ceil(55*t))",
    "fullEquation": "sin(2 * pi * (atan2(hypot(pi,880*t),ceil(55*t))))",
    "friendlyName": "Buz....",
    "id": "E(27)(19)7-2:59:1109135941",
    "timestamp": "2025-11-02T15:01:10.387Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "880*t",
      "55*t"
    ],
    "nodeFunctions": [
      "ceil"
    ]
  },
  {
    "equation": "atan2(nroot(220*t,1),sin(440*t))",
    "fullEquation": "sin(2 * pi * (atan2(nroot(220*t,1),sin(440*t))))",
    "friendlyName": "Thud",
    "id": "E(27)(19)7-2:59:1109135940",
    "timestamp": "2025-11-02T15:00:59.193Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "1",
      "440*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "atan2((220*t ^ pi),tan(329.63*t))",
    "fullEquation": "sin(2 * pi * (atan2((220*t ^ pi),tan(329.63*t))))",
    "friendlyName": "Bwangguhhhh",
    "id": "E(27)(19)7-2:59:1109135918",
    "timestamp": "2025-11-02T15:00:10.366Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "220*t",
      "pi",
      "329.63*t"
    ],
    "nodeFunctions": [
      "tan"
    ]
  },
  {
    "equation": "atan2(powSigned(t,2),fract(110*t))",
    "fullEquation": "sin(2 * pi * (atan2(powSigned(t,2),fract(110*t))))",
    "friendlyName": "Vrwaaanguuuuhhh",
    "id": "E(27)(19)7-2:59:1109135917",
    "timestamp": "2025-11-02T15:00:05.908Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "t",
      "2",
      "110*t"
    ],
    "nodeFunctions": [
      "fract"
    ]
  },
  {
    "equation": "hypot(max(pi,55*t),sin(880*t))",
    "fullEquation": "sin(2 * pi * (hypot(max(pi,55*t),sin(880*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:59:1109135886",
    "timestamp": "2025-11-02T14:59:21.456Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "pi",
      "55*t",
      "880*t"
    ],
    "nodeFunctions": [
      "sin"
    ]
  },
  {
    "equation": "sin(softplus(261.63*t))",
    "fullEquation": "sin(2 * pi * (sin(softplus(261.63*t))))",
    "friendlyName": "HmMmMmMmMmmm",
    "id": "E(27)(19)7-5:2:2",
    "timestamp": "2025-11-02T14:57:37.168Z",
    "depth": 3,
    "width": 1,
    "leaves": 1,
    "nodes": 3,
    "leafValues": [
      "261.63*t"
    ],
    "nodeFunctions": [
      "sin",
      "softplus"
    ]
  },
  {
    "equation": "detuneCents(lerp(safeDiv(2,110*t),clamp(1,261.63*t,392*t),(1 + 392*t)),smoothstep((440*t * 2),sin(t),sign(E)))",
    "fullEquation": "sin(2 * pi * (detuneCents(lerp(safeDiv(2,110*t),clamp(1,261.63*t,392*t),(1 + 392*t)),smoothstep((440*t * 2),sin(t),sign(E)))))",
    "friendlyName": "SwtSwtSwtSwtSwtSwt",
    "id": "E(27)(19)7-3:922676:189673283874816",
    "timestamp": "2025-11-02T14:56:35.188Z",
    "depth": 4,
    "width": 11,
    "leaves": 11,
    "nodes": 20,
    "leafValues": [
      "2",
      "110*t",
      "1",
      "261.63*t",
      "392*t",
      "440*t",
      "t",
      "E"
    ],
    "nodeFunctions": [
      "sin",
      "sign"
    ]
  },
  {
    "equation": "(exp(exp(E)) * detuneCents(wrap((261.63*t + 55*t),sigmoid(0.5),0.5),cos(0.5)))",
    "fullEquation": "sin(2 * pi * ((exp(exp(E)) * detuneCents(wrap((261.63*t + 55*t),sigmoid(0.5),0.5),cos(0.5)))))",
    "friendlyName": "TingleBeep",
    "id": "E(27)(19)7-7:49:1000",
    "timestamp": "2025-11-02T14:46:24.517Z",
    "depth": 5,
    "width": 5,
    "leaves": 6,
    "nodes": 14,
    "leafValues": [
      "E",
      "0.5",
      "261.63*t",
      "55*t"
    ],
    "nodeFunctions": [
      "exp",
      "cos",
      "sigmoid"
    ]
  },
  {
    "equation": "(cosh(2) * detuneCents(2,(cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) - abs(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))))",
    "fullEquation": "sin(2 * pi * ((cosh(2) * detuneCents(2,(cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) - abs(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:39:1818588887",
    "timestamp": "2025-11-02T06:25:48.596Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "(cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) - abs(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))"
    ],
    "nodeFunctions": [
      "cosh"
    ]
  },
  {
    "equation": "(cosh(2) + hypot(440*t,220*t))",
    "fullEquation": "sin(2 * pi * ((cosh(2) + hypot(440*t,220*t))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:39:1111757461",
    "timestamp": "2025-11-02T06:24:08.810Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "2",
      "440*t",
      "220*t"
    ],
    "nodeFunctions": [
      "cosh"
    ]
  },
  {
    "equation": "(acosh(392*t) + (110*t + pi))",
    "fullEquation": "sin(2 * pi * ((acosh(392*t) + (110*t + pi))))",
    "friendlyName": "",
    "id": "E(27)(19)7-2:39:1111757449",
    "timestamp": "2025-11-02T06:23:54.032Z",
    "depth": 3,
    "width": 3,
    "leaves": 3,
    "nodes": 6,
    "leafValues": [
      "392*t",
      "110*t",
      "pi"
    ],
    "nodeFunctions": [
      "acosh"
    ]
  },
  {
    "equation": "cos(expm1(logNeutral(lambertW(sin(abs((ratio(E,110*t) * acosh(t))))),fract(softplus(t)))))",
    "fullEquation": "sin(2 * pi * (cos(expm1(logNeutral(lambertW(sin(abs((ratio(E,110*t) * acosh(t))))),fract(softplus(t)))))))",
    "friendlyName": "",
    "id": "E(27)(19)7-8:66:1",
    "timestamp": "2025-11-02T06:21:23.328Z",
    "depth": 9,
    "width": 3,
    "leaves": 4,
    "nodes": 15,
    "leafValues": [
      "t",
      "E",
      "110*t"
    ],
    "nodeFunctions": [
      "cos",
      "expm1",
      "lambertW",
      "fract",
      "sin",
      "softplus",
      "abs",
      "acosh"
    ]
  },
  {
    "equation": "cos(sum3(asinh(powSigned(0.5,1)),wrap(detuneCents(110*t,2),sinc(sin(E)),55*t),detuneCents(392*t,55*t)))",
    "fullEquation": "sin(2 * pi * (cos(sum3(asinh(powSigned(0.5,1)),wrap(detuneCents(110*t,2),sinc(sin(E)),55*t),detuneCents(392*t,55*t)))))",
    "friendlyName": "BwoooOOOOOOOAAH",
    "id": "E(27)(19)7-5:1:5",
    "timestamp": "2025-11-02T06:18:16.888Z",
    "depth": 6,
    "width": 6,
    "leaves": 8,
    "nodes": 17,
    "leafValues": [
      "55*t",
      "392*t",
      "0.5",
      "1",
      "110*t",
      "2",
      "E"
    ],
    "nodeFunctions": [
      "cos",
      "asinh",
      "sinc",
      "sin"
    ]
  },
  {
    "equation": "log1p(cosh(clamp(sign(abs(expm1(sinh(1)))),t,clamp((t + clamp(2,110*t,(pi * 110*t))),clamp(sin(clamp(2,55*t,tanh(220*t))),tan(440*t),1),t))))",
    "fullEquation": "sin(2 * pi * (log1p(cosh(clamp(sign(abs(expm1(sinh(1)))),t,clamp((t + clamp(2,110*t,(pi * 110*t))),clamp(sin(clamp(2,55*t,tanh(220*t))),tan(440*t),1),t))))))",
    "friendlyName": "HunNUNuNununuh",
    "id": "E(27)97-8:7:27216",
    "timestamp": "2025-11-02T06:13:25.463Z",
    "depth": 9,
    "width": 6,
    "leaves": 13,
    "nodes": 29,
    "leafValues": [
      "t",
      "1",
      "2",
      "110*t",
      "440*t",
      "pi",
      "55*t",
      "220*t"
    ],
    "nodeFunctions": [
      "log1p",
      "cosh",
      "sign",
      "abs",
      "expm1",
      "sin",
      "tan",
      "sinh",
      "tanh"
    ]
  },
  {
    "equation": "cos(((expm1(round((nroot(55*t,440*t) / sign(0.5)))) - exp(pi)) - t))",
    "fullEquation": "sin(2 * pi * (cos(((expm1(round((nroot(55*t,440*t) / sign(0.5)))) - exp(pi)) - t))))",
    "friendlyName": "",
    "id": "E(27)97-7:80:6",
    "timestamp": "2025-11-02T06:11:13.137Z",
    "depth": 8,
    "width": 3,
    "leaves": 5,
    "nodes": 14,
    "leafValues": [
      "t",
      "pi",
      "55*t",
      "440*t",
      "0.5"
    ],
    "nodeFunctions": [
      "cos",
      "-",
      "expm1",
      "exp",
      "round",
      "sign"
    ]
  },
  {
    "equation": "lerp(exp((55*t % log1p(sinc(55*t)))),persp((261.63*t * lerp(t,880*t,0.5)),sinc(E)),log1p(E))",
    "fullEquation": "sin(2 * pi * (lerp(exp((55*t % log1p(sinc(55*t)))),persp((261.63*t * lerp(t,880*t,0.5)),sinc(E)),log1p(E))))",
    "friendlyName": "",
    "id": "E(27)97-5:8:1000",
    "timestamp": "2025-11-02T06:01:37.101Z",
    "depth": 6,
    "width": 5,
    "leaves": 8,
    "nodes": 18,
    "leafValues": [
      "E",
      "55*t",
      "261.63*t",
      "t",
      "880*t",
      "0.5"
    ],
    "nodeFunctions": [
      "exp",
      "persp",
      "log1p",
      "%",
      "*",
      "sinc"
    ]
  },
  {
    "equation": "clamp(gamma((0.5 % cosh(ceil(pi)))),(110*t % tanh(2)),asinh(pi))",
    "fullEquation": "sin(2 * pi * (clamp(gamma((0.5 % cosh(ceil(pi)))),(110*t % tanh(2)),asinh(pi))))",
    "friendlyName": "",
    "id": "E(27)97-5:8:1000",
    "timestamp": "2025-11-02T06:00:14.855Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 13,
    "leafValues": [
      "110*t",
      "pi",
      "0.5",
      "2"
    ],
    "nodeFunctions": [
      "gamma",
      "%",
      "asinh",
      "tanh",
      "cosh",
      "ceil"
    ]
  },
  {
    "equation": "fm(softplus((55*t / sign(abs(55*t)))),(pi % sign(2)),round(261.63*t))",
    "fullEquation": "sin(2 * pi * (fm(softplus((55*t / sign(abs(55*t)))),(pi % sign(2)),round(261.63*t))))",
    "friendlyName": "",
    "id": "E(27)97-5:8:1000",
    "timestamp": "2025-11-02T05:58:55.583Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 13,
    "leafValues": [
      "pi",
      "261.63*t",
      "55*t",
      "2"
    ],
    "nodeFunctions": [
      "softplus",
      "%",
      "round",
      "/",
      "sign",
      "abs"
    ]
  },
  {
    "equation": "median(safeLog(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))),(t * softplus(((261.63*t * E) % tanh(2)))),sin(t))",
    "fullEquation": "sin(2 * pi * (median(safeLog(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))),(t * softplus(((261.63*t * E) % tanh(2)))),sin(t))))",
    "friendlyName": "Mosquito",
    "id": "E(27)67-5:8:13608",
    "timestamp": "2025-11-02T05:54:35.816Z",
    "depth": 3,
    "width": 4,
    "leaves": 4,
    "nodes": 8,
    "leafValues": [
      "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))",
      "t",
      "softplus(((261.63*t * E) % tanh(2)))"
    ],
    "nodeFunctions": [
      "safeLog",
      "*",
      "sin"
    ]
  },
  {
    "equation": "((440*t % 440*t) * clamp(sin(1),sin((0.5 + 220*t)),t))",
    "fullEquation": "sin(2 * pi * (((440*t % 440*t) * clamp(sin(1),sin((0.5 + 220*t)),t))))",
    "friendlyName": "Pwowawawa HighPitched",
    "id": "E(27)65-5:8:13608",
    "timestamp": "2025-11-02T05:51:11.758Z",
    "depth": 5,
    "width": 5,
    "leaves": 6,
    "nodes": 12,
    "leafValues": [
      "440*t",
      "t",
      "1",
      "0.5",
      "220*t"
    ],
    "nodeFunctions": [
      "*",
      "%",
      "sin",
      "+"
    ]
  },
  {
    "equation": "softplus(((261.63*t * E) % tanh(2)))",
    "fullEquation": "sin(2 * pi * (softplus(((261.63*t * E) % tanh(2)))))",
    "friendlyName": "HighPitchTwerp",
    "id": "E(27)65-3:1000:962",
    "timestamp": "2025-11-02T05:48:05.809Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "261.63*t",
      "E",
      "2"
    ],
    "nodeFunctions": [
      "softplus",
      "%",
      "*",
      "tanh"
    ]
  },
  {
    "equation": "sin(((55*t / 220*t) - cos(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t)))))))",
    "fullEquation": "sin(2 * pi * (sin(((55*t / 220*t) - cos(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t)))))))))",
    "friendlyName": "",
    "id": "EB55-3:867481:281",
    "timestamp": "2025-11-02T05:33:40.605Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "55*t",
      "220*t",
      "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))"
    ],
    "nodeFunctions": [
      "sin",
      "-",
      "/",
      "cos"
    ]
  },
  {
    "equation": "sin(((((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t)))) + ((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))) * sqrt(220*t)))",
    "fullEquation": "sin(2 * pi * (sin(((((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t)))) + ((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))) * sqrt(220*t)))))",
    "friendlyName": "",
    "id": "EB55-3:867481:10",
    "timestamp": "2025-11-02T05:32:41.292Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))",
      "220*t"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "+",
      "sqrt"
    ]
  },
  {
    "equation": "log(((55*t + 55*t) - round(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))))))",
    "fullEquation": "sin(2 * pi * (log(((55*t + 55*t) - round(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))))))))",
    "friendlyName": "Explode&Drip",
    "id": "EB55-3:867481:26087756634",
    "timestamp": "2025-11-02T05:29:59.594Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "55*t",
      "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))"
    ],
    "nodeFunctions": [
      "log",
      "-",
      "+",
      "round"
    ]
  },
  {
    "equation": "log(((392*t * t) / exp(261.63*t)))",
    "fullEquation": "sin(2 * pi * (log(((392*t * t) / exp(261.63*t)))))",
    "friendlyName": "BwoooOOOOOOP",
    "id": "EB55-3:867481:26087756754",
    "timestamp": "2025-11-02T05:29:10.424Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "392*t",
      "t",
      "261.63*t"
    ],
    "nodeFunctions": [
      "log",
      "/",
      "*",
      "exp"
    ]
  },
  {
    "equation": "log(((0.5 - pi) + exp(cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(440*t),440*t))))))",
    "fullEquation": "sin(2 * pi * (log(((0.5 - pi) + exp(cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(440*t),440*t))))))))",
    "friendlyName": "",
    "id": "EB55-3:867481:26087756770",
    "timestamp": "2025-11-02T05:28:55.485Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "0.5",
      "pi",
      "cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(440*t),440*t)))"
    ],
    "nodeFunctions": [
      "log",
      "+",
      "-",
      "exp"
    ]
  },
  {
    "equation": "round(((0.5 ^ 220*t) ^ tan(55*t)))",
    "fullEquation": "sin(2 * pi * (round(((0.5 ^ 220*t) ^ tan(55*t)))))",
    "friendlyName": "TickaTickaTicka...",
    "id": "EB55-3:867481:33177971353",
    "timestamp": "2025-11-02T05:27:59.747Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "0.5",
      "220*t",
      "55*t"
    ],
    "nodeFunctions": [
      "round",
      "^",
      "tan"
    ]
  },
  {
    "equation": "sqrt((220*t - sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))))",
    "fullEquation": "sin(2 * pi * (sqrt((220*t - sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))))))",
    "friendlyName": "",
    "id": "8B51-4:7:388594664618",
    "timestamp": "2025-11-02T05:22:04.792Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 4,
    "leafValues": [
      "220*t",
      "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))"
    ],
    "nodeFunctions": [
      "sqrt",
      "-"
    ]
  },
  {
    "equation": "median(median((E - t),(t * 2),((abs(round(0.5)) * (t / cos(440*t))) * 220*t)),median(E,floor(2),(2 / E)),sin(exp(t)))",
    "fullEquation": "sin(2 * pi * (median(median((E - t),(t * 2),((abs(round(0.5)) * (t / cos(440*t))) * 220*t)),median(E,floor(2),(2 / E)),sin(exp(t)))))",
    "friendlyName": "",
    "id": "8B51-3:1000:1000",
    "timestamp": "2025-11-02T05:14:39.963Z",
    "depth": 4,
    "width": 10,
    "leaves": 11,
    "nodes": 21,
    "leafValues": [
      "E",
      "t",
      "2",
      "(abs(round(0.5)) * (t / cos(440*t)))",
      "220*t"
    ],
    "nodeFunctions": [
      "sin",
      "-",
      "*",
      "floor",
      "/",
      "exp"
    ]
  },
  {
    "equation": "cos(tan((abs((t + t)) ^ (E + tan(t)))))",
    "fullEquation": "sin(2 * pi * (cos(tan((abs((t + t)) ^ (E + tan(t)))))))",
    "friendlyName": "",
    "id": "8B51-4:100:1000",
    "timestamp": "2025-11-02T05:11:00.965Z",
    "depth": 6,
    "width": 3,
    "leaves": 4,
    "nodes": 11,
    "leafValues": [
      "E",
      "t"
    ],
    "nodeFunctions": [
      "cos",
      "tan",
      "^",
      "abs",
      "+"
    ]
  },
  {
    "equation": "exp(sign((((1 / 0.5) / (1 * 220*t)) + ((440*t * sin(((0.5 + ((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))) + ((tan(ceil(220*t)) ^ (440*t - E)) + clamp(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))),cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi))),sin((tan(ceil(440*t)) ^ (t + t)))))))) - round(2)))))",
    "fullEquation": "sin(2 * pi * (exp(sign((((1 / 0.5) / (1 * 220*t)) + ((440*t * sin(((0.5 + ((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))) + ((tan(ceil(220*t)) ^ (440*t - E)) + clamp(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))),cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi))),sin((tan(ceil(440*t)) ^ (t + t)))))))) - round(2)))))))",
    "friendlyName": "",
    "id": "8B50-5:675:1000",
    "timestamp": "2025-11-02T00:50:58.600Z",
    "depth": 6,
    "width": 7,
    "leaves": 7,
    "nodes": 16,
    "leafValues": [
      "1",
      "0.5",
      "220*t",
      "440*t",
      "sin(((0.5 + ((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))) + ((tan(ceil(220*t)) ^ (440*t - E)) + clamp(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))),cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi))),sin((tan(ceil(440*t)) ^ (t + t)))))))",
      "2"
    ],
    "nodeFunctions": [
      "exp",
      "sign",
      "+",
      "/",
      "-",
      "*",
      "round"
    ]
  },
  {
    "equation": "sin(((0.5 + ((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))) + ((tan(ceil(220*t)) ^ (440*t - E)) + clamp(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))),cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi))),sin((tan(ceil(440*t)) ^ (t + t)))))))",
    "fullEquation": "sin(2 * pi * (sin(((0.5 + ((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))) + ((tan(ceil(220*t)) ^ (440*t - E)) + clamp(sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E))))),cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi))),sin((tan(ceil(440*t)) ^ (t + t)))))))))",
    "friendlyName": "sin(((0.5+((((1-cosE)/(220*t+round440*t))+((tanE-(π^1))*((t^t)+(t*π))))+((((π*t)+sign0.5)^((E/0.5)-|1|))/sign(√E^exp220*t))))+((tan(⌈220*t⌉)^(440*t-E))+clamp(sin((((log(log220*t/round440*t)-sin(log220*t/round440*t))*((((0.5+exp2)/(1/√440*t))+((log220*t^(π*2))^((E/440*t)/(π*E))))+((((E-220*t)^√1)+((0.5*1)*signπ))+cos(|0.5|*sign1))))*abs((tan(⌈220*t⌉)^(t-E))))),cos((fm(E,(clamp(2,π,0.5)*E),2)/fm((exp(((0.5+E)+cosπ))/440*t),√t,π))),sin((tan(⌈440*t⌉)^(t+t)))))))",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-02T00:04:15.995Z",
    "depth": 6,
    "width": 4,
    "leaves": 6,
    "nodes": 12,
    "leafValues": [
      "0.5",
      "((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))",
      "(tan(ceil(220*t)) ^ (440*t - E))",
      "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))",
      "cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi)))",
      "(tan(ceil(440*t)) ^ (t + t))"
    ],
    "nodeFunctions": [
      "sin",
      "+"
    ]
  },
  {
    "equation": "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))",
    "fullEquation": "sin(2 * pi * (sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) * ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))))",
    "friendlyName": "sin((((log(log220*t/round440*t)-sin(log220*t/round440*t))*((((0.5+exp2)/(1/√440*t))+((log220*t^(π*2))^((E/440*t)/(π*E))))+((((E-220*t)^√1)+((0.5*1)*signπ))+cos(|0.5|*sign1))))*abs((tan(⌈220*t⌉)^(t-E)))))",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-02T00:01:21.907Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))",
      "((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))",
      "(tan(ceil(220*t)) ^ (t - E))"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "abs"
    ]
  },
  {
    "equation": "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))",
    "fullEquation": "sin(2 * pi * (sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))) * abs((tan(ceil(220*t)) ^ (t - E)))))))",
    "friendlyName": "",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-02T00:00:27.415Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))",
      "((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))",
      "(tan(ceil(220*t)) ^ (t - E))"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "+",
      "abs"
    ]
  },
  {
    "equation": "cos((((log(220*t) / round(440*t)) / (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * round((tan(ceil(220*t)) ^ t))))",
    "fullEquation": "sin(2 * pi * (cos((((log(220*t) / round(440*t)) / (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * round((tan(ceil(220*t)) ^ t))))))",
    "friendlyName": "",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:59:59.361Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log(220*t) / round(440*t))",
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "(tan(ceil(220*t)) ^ t)"
    ],
    "nodeFunctions": [
      "cos",
      "*",
      "/",
      "round"
    ]
  },
  {
    "equation": "sin((((log(220*t) / round(440*t)) + (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * floor((tan(ceil(440*t)) ^ t))))",
    "fullEquation": "sin(2 * pi * (sin((((log(220*t) / round(440*t)) + (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * floor((tan(ceil(440*t)) ^ t))))))",
    "friendlyName": "DigitalPatter",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:59:27.471Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log(220*t) / round(440*t))",
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "(tan(ceil(440*t)) ^ t)"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "+",
      "floor"
    ]
  },
  {
    "equation": "sin((((log(220*t) / round(440*t)) + (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * abs((tan(ceil(440*t)) ^ t))))",
    "fullEquation": "sin(2 * pi * (sin((((log(220*t) / round(440*t)) + (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) * abs((tan(ceil(440*t)) ^ t))))))",
    "friendlyName": "",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:59:19.498Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log(220*t) / round(440*t))",
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "(tan(ceil(440*t)) ^ t)"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "+",
      "abs"
    ]
  },
  {
    "equation": "sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))",
    "fullEquation": "sin(2 * pi * (sin((((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + ((E - sin(0.5)) - (sin(2) + (1 - 220*t)))) * abs((tan(ceil(440*t)) ^ t))))))",
    "friendlyName": "WateryFlood",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:59:02.569Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))",
      "((E - sin(0.5)) - (sin(2) + (1 - 220*t)))",
      "(tan(ceil(440*t)) ^ t)"
    ],
    "nodeFunctions": [
      "sin",
      "*",
      "+",
      "abs"
    ]
  },
  {
    "equation": "cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi)))",
    "fullEquation": "sin(2 * pi * (cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((exp(((0.5 + E) + cos(pi))) / 440*t),sqrt(t),pi)))))",
    "friendlyName": "PtPtPught",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:57:16.958Z",
    "depth": 8,
    "width": 6,
    "leaves": 12,
    "nodes": 24,
    "leafValues": [
      "E",
      "2",
      "pi",
      "440*t",
      "t",
      "0.5"
    ],
    "nodeFunctions": [
      "cos",
      "/",
      "*",
      "sqrt",
      "exp",
      "+"
    ]
  },
  {
    "equation": "cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((sin(((0.5 + E) + cos(pi))) / 220*t),sqrt(220*t),pi)))",
    "fullEquation": "sin(2 * pi * (cos((fm(E,(clamp(2,pi,0.5) * E),2) / fm((sin(((0.5 + E) + cos(pi))) / 220*t),sqrt(220*t),pi)))))",
    "friendlyName": "BwoOwupupupup...",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:56:35.394Z",
    "depth": 8,
    "width": 6,
    "leaves": 12,
    "nodes": 24,
    "leafValues": [
      "E",
      "2",
      "pi",
      "220*t",
      "0.5"
    ],
    "nodeFunctions": [
      "cos",
      "/",
      "*",
      "sqrt",
      "sin",
      "+"
    ]
  },
  {
    "equation": "cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(440*t),440*t)))",
    "fullEquation": "sin(2 * pi * (cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(440*t),440*t)))))",
    "friendlyName": "StaticSpring",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:55:08.561Z",
    "depth": 6,
    "width": 6,
    "leaves": 8,
    "nodes": 16,
    "leafValues": [
      "pi",
      "E",
      "440*t",
      "t",
      "0.5"
    ],
    "nodeFunctions": [
      "cos",
      "/",
      "-",
      "tan"
    ]
  },
  {
    "equation": "cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(2),440*t)))",
    "fullEquation": "sin(2 * pi * (cos((fm(pi,(tan(440*t) - E),E) / fm((t / 0.5),tan(2),440*t)))))",
    "friendlyName": "ShortSprung",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:54:57.829Z",
    "depth": 6,
    "width": 6,
    "leaves": 8,
    "nodes": 16,
    "leafValues": [
      "pi",
      "E",
      "440*t",
      "t",
      "0.5",
      "2"
    ],
    "nodeFunctions": [
      "cos",
      "/",
      "-",
      "tan"
    ]
  },
  {
    "equation": "cos((fm(pi,(tan(440*t) - E),E) / fm((1 / 440*t),tan(0.5),440*t)))",
    "fullEquation": "sin(2 * pi * (cos((fm(pi,(tan(440*t) - E),E) / fm((1 / 440*t),tan(0.5),440*t)))))",
    "friendlyName": "Sprung",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:54:39.828Z",
    "depth": 6,
    "width": 6,
    "leaves": 8,
    "nodes": 16,
    "leafValues": [
      "pi",
      "E",
      "440*t",
      "1",
      "0.5"
    ],
    "nodeFunctions": [
      "cos",
      "/",
      "-",
      "tan"
    ]
  },
  {
    "equation": "cos((sum3(0.5,(tan(440*t) - 440*t),pi) + fm((2 ^ 440*t),ceil(440*t),0.5)))",
    "fullEquation": "sin(2 * pi * (cos((sum3(0.5,(tan(440*t) - 440*t),pi) + fm((2 ^ 440*t),ceil(440*t),0.5)))))",
    "friendlyName": "",
    "id": "8B55-3:77:1",
    "timestamp": "2025-11-01T23:54:19.188Z",
    "depth": 6,
    "width": 6,
    "leaves": 8,
    "nodes": 16,
    "leafValues": [
      "0.5",
      "pi",
      "440*t",
      "2"
    ],
    "nodeFunctions": [
      "cos",
      "+",
      "-",
      "^",
      "ceil",
      "tan"
    ]
  },
  {
    "equation": "(tan(ceil(440*t)) ^ (t + t))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(440*t)) ^ (t + t))))",
    "friendlyName": "BwoypDripping",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:52:20.126Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "t",
      "440*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "+",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(440*t)) ^ (2 + 440*t))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(440*t)) ^ (2 + 440*t))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:52:09.347Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "2",
      "440*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "+",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(440*t)) ^ (2 / 440*t))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(440*t)) ^ (2 / 440*t))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:52:03.943Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "2",
      "440*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "/",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(440*t)) ^ (pi - E))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(440*t)) ^ (pi - E))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:51:47.283Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "pi",
      "E",
      "440*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "-",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(220*t)) ^ (220*t - E))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(220*t)) ^ (220*t - E))))",
    "friendlyName": "(tan(⌈220*t⌉)^(220*t-E))",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:51:20.434Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "220*t",
      "E"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "-",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(220*t)) ^ (t - E))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(220*t)) ^ (t - E))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:50:58.793Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "t",
      "E",
      "220*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "-",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(220*t)) ^ (440*t - E))",
    "fullEquation": "sin(2 * pi * ((tan(ceil(220*t)) ^ (440*t - E))))",
    "friendlyName": "ScratchSweeping",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:50:19.461Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 7,
    "leafValues": [
      "440*t",
      "E",
      "220*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "-",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(220*t)) ^ 220*t)",
    "fullEquation": "sin(2 * pi * ((tan(ceil(220*t)) ^ 220*t)))",
    "friendlyName": "ComputerShards",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:49:28.068Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "220*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(440*t)) ^ t)",
    "fullEquation": "sin(2 * pi * ((tan(ceil(440*t)) ^ t)))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:48:46.692Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "t",
      "440*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "ceil"
    ]
  },
  {
    "equation": "(tan(ceil(220*t)) ^ t)",
    "fullEquation": "sin(2 * pi * ((tan(ceil(220*t)) ^ t)))",
    "friendlyName": "BwvHvhVhDripVwh",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:48:04.751Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "t",
      "220*t"
    ],
    "nodeFunctions": [
      "^",
      "tan",
      "ceil"
    ]
  },
  {
    "equation": "(ceil(sin(220*t)) + 440*t)",
    "fullEquation": "sin(2 * pi * ((abs((floor(((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) ^ 1) - (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t)))))) - cos(sign((((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t)))) ^ 220*t))))) - cos((sign(cos((ceil((abs(round(0.5)) * (t / cos(440*t)))) - cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))) / ((E - sin(0.5)) - (sin(2) + (1 - 220*t))))))))",
    "friendlyName": "",
    "id": "8B5-3:226:8",
    "timestamp": "2025-11-01T23:45:43.687Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "440*t",
      "220*t"
    ],
    "nodeFunctions": [
      "+",
      "ceil",
      "sin"
    ]
  },
  {
    "equation": "(ceil(sin(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))))) + (log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))))",
    "fullEquation": "sin(2 * pi * ((ceil(sin(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))))) + (log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))))))",
    "friendlyName": "",
    "id": "8B5-3:226:8",
    "timestamp": "2025-11-01T23:44:50.223Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))"
    ],
    "nodeFunctions": [
      "+",
      "ceil",
      "sin"
    ]
  },
  {
    "equation": "(sqrt(tan(cos(log(cos(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi))))))))) + (((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + E) + E))",
    "fullEquation": "sin(2 * pi * ((sqrt(tan(cos(log(cos(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi))))))))) + (((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t)))) + E) + E))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:41:50.897Z",
    "depth": 4,
    "width": 3,
    "leaves": 4,
    "nodes": 9,
    "leafValues": [
      "E",
      "cos(log(cos(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi)))))))",
      "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))"
    ],
    "nodeFunctions": [
      "+",
      "sqrt",
      "tan"
    ]
  },
  {
    "equation": "(sin(exp(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))))) + ((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((E ^ tan(t))))))",
    "fullEquation": "sin(2 * pi * ((sin(exp(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))))) + ((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((E ^ tan(t))))))))",
    "friendlyName": "",
    "id": "8B5-3:226:1",
    "timestamp": "2025-11-01T23:40:50.813Z",
    "depth": 4,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((E ^ tan(t)))))",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))"
    ],
    "nodeFunctions": [
      "+",
      "sin",
      "exp"
    ]
  },
  {
    "equation": "(abs((floor(((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) ^ 1) - (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t)))))) - cos(sign((((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t)))) ^ 220*t))))) - cos((sign(cos((ceil((abs(round(0.5)) * (t / cos(440*t)))) - cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))) / ((E - sin(0.5)) - (sin(2) + (1 - 220*t))))))",
    "fullEquation": "sin(2 * pi * ((abs((floor(((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) ^ 1) - (((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t)))))) - cos(sign((((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t)))) ^ 220*t))))) - cos((sign(cos((ceil((abs(round(0.5)) * (t / cos(440*t)))) - cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))) / ((E - sin(0.5)) - (sin(2) + (1 - 220*t))))))))",
    "friendlyName": "",
    "id": "8B5-3:77:1",
    "timestamp": "2025-11-01T23:38:22.225Z",
    "depth": 8,
    "width": 6,
    "leaves": 8,
    "nodes": 23,
    "leafValues": [
      "((E - sin(0.5)) - (sin(2) + (1 - 220*t)))",
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))",
      "1",
      "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))",
      "220*t",
      "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))",
      "(abs(round(0.5)) * (t / cos(440*t)))"
    ],
    "nodeFunctions": [
      "-",
      "abs",
      "cos",
      "/",
      "floor",
      "sign",
      "^",
      "ceil"
    ]
  },
  {
    "equation": "(tan((sin(((220*t ^ 0.5) + 0.5)) - exp(sqrt((E + 2))))) - ceil((sqrt(round((sqrt(220*t) * t))) * pi)))",
    "fullEquation": "sin(2 * pi * ((tan((sin(((220*t ^ 0.5) + 0.5)) - exp(sqrt((E + 2))))) - ceil((sqrt(round((sqrt(220*t) * t))) * pi)))))",
    "friendlyName": "",
    "id": "8B5-3:77:1",
    "timestamp": "2025-11-01T23:38:15.509Z",
    "depth": 8,
    "width": 6,
    "leaves": 8,
    "nodes": 23,
    "leafValues": [
      "pi",
      "0.5",
      "220*t",
      "E",
      "2",
      "t"
    ],
    "nodeFunctions": [
      "-",
      "tan",
      "ceil",
      "*",
      "sin",
      "exp",
      "sqrt",
      "+",
      "round",
      "^"
    ]
  },
  {
    "equation": "(sqrt(tan(sin(sqrt(sign(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))))))))) + sqrt(((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t)))) * cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))",
    "fullEquation": "sin(2 * pi * ((sqrt(tan(sin(sqrt(sign(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))))))))) + sqrt(((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t)))) * cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))",
    "friendlyName": "GarbageCrumple",
    "id": "8B5-3:230:1",
    "timestamp": "2025-11-01T23:32:44.995Z",
    "depth": 4,
    "width": 3,
    "leaves": 3,
    "nodes": 8,
    "leafValues": [
      "sin(sqrt(sign(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))",
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))"
    ],
    "nodeFunctions": [
      "+",
      "sqrt",
      "tan",
      "*"
    ]
  },
  {
    "equation": "(220*t + ceil(sin(sqrt(log(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))))",
    "fullEquation": "sin(2 * pi * ((220*t + ceil(sin(sqrt(log(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))))))",
    "friendlyName": "",
    "id": "8B5-3:77:1",
    "timestamp": "2025-11-01T23:30:14.234Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 4,
    "leafValues": [
      "220*t",
      "sin(sqrt(log(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))"
    ],
    "nodeFunctions": [
      "+",
      "ceil"
    ]
  },
  {
    "equation": "(cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) / cos(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))",
    "fullEquation": "sin(2 * pi * ((cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) / cos(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))))",
    "friendlyName": "",
    "id": "8B5-3:77:81642589",
    "timestamp": "2025-11-01T23:26:32.953Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))"
    ],
    "nodeFunctions": [
      "/",
      "cos"
    ]
  },
  {
    "equation": "(cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) - abs(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))",
    "fullEquation": "sin(2 * pi * ((cos((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))) - abs(((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))))",
    "friendlyName": "",
    "id": "8B5-3:77:81642589",
    "timestamp": "2025-11-01T23:25:32.556Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
      "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))"
    ],
    "nodeFunctions": [
      "-",
      "cos",
      "abs"
    ]
  },
  {
    "equation": "(cos(440*t) - abs(t))",
    "fullEquation": "sin(2 * pi * ((cos(440*t) - abs(t))))",
    "friendlyName": "OohwaOohwaOowhaOohwa",
    "id": "8B5-3:77:81642589",
    "timestamp": "2025-11-01T23:24:23.954Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "440*t",
      "t"
    ],
    "nodeFunctions": [
      "-",
      "cos",
      "abs"
    ]
  },
  {
    "equation": "((E - sin(0.5)) - (sin(2) + (1 - 220*t)))",
    "fullEquation": "sin(2 * pi * (((E - sin(0.5)) - (sin(2) + (1 - 220*t)))))",
    "friendlyName": "Pwuuuuuunggggg",
    "id": "8B5-3:317:85184000",
    "timestamp": "2025-11-01T23:17:47.405Z",
    "depth": 4,
    "width": 4,
    "leaves": 5,
    "nodes": 11,
    "leafValues": [
      "E",
      "0.5",
      "2",
      "1",
      "220*t"
    ],
    "nodeFunctions": [
      "-",
      "+",
      "sin"
    ]
  },
  {
    "equation": "(((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))",
    "fullEquation": "sin(2 * pi * ((((E ^ 1) + (log(2) - sqrt(tan(1)))) * (((exp(pi) ^ (t + 440*t)) ^ (sin(E) - exp(440*t))) + cos((ceil(1) - 220*t))))))",
    "friendlyName": "Bwuuuuuuuump",
    "id": "8B5-5:16506118010:16491622400000",
    "timestamp": "2025-11-01T23:17:09.843Z",
    "depth": 6,
    "width": 8,
    "leaves": 11,
    "nodes": 29,
    "leafValues": [
      "E",
      "1",
      "2",
      "220*t",
      "pi",
      "t",
      "440*t"
    ],
    "nodeFunctions": [
      "*",
      "+",
      "^",
      "-",
      "cos",
      "log",
      "sqrt",
      "tan",
      "exp",
      "sin",
      "ceil"
    ]
  },
  {
    "equation": "sin(sqrt((440*t + ((E * 220*t) * (2 ^ pi)))))",
    "fullEquation": "sin(2 * pi * (sin(sqrt((440*t + ((E * 220*t) * (2 ^ pi)))))))",
    "friendlyName": "Deep Wuh",
    "id": "8B5-5:77:1",
    "timestamp": "2025-11-01T23:00:37.808Z",
    "depth": 6,
    "width": 4,
    "leaves": 5,
    "nodes": 11,
    "leafValues": [
      "440*t",
      "E",
      "220*t",
      "2",
      "pi"
    ],
    "nodeFunctions": [
      "sin",
      "sqrt",
      "+",
      "*",
      "^"
    ]
  },
  {
    "equation": "((((220*t / exp(1)) + (1 + sin(220*t))) - ((sqrt(1) * (220*t * 0.5)) * ((t + 0.5) * (2 ^ 2)))) ^ ((((440*t * E) / sign(E)) - ((2 * 220*t) / floor(1))) / cos((round(1) * sign(0.5)))))",
    "fullEquation": "sin(2 * pi * (((((220*t / exp(1)) + (1 + sin(220*t))) - ((sqrt(1) * (220*t * 0.5)) * ((t + 0.5) * (2 ^ 2)))) ^ ((((440*t * E) / sign(E)) - ((2 * 220*t) / floor(1))) / cos((round(1) * sign(0.5)))))))",
    "friendlyName": "LightClick",
    "id": "8B5-5:97242270707:11906447336300",
    "timestamp": "2025-11-01T22:59:09.397Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "220*t",
      "1",
      "0.5",
      "t",
      "2",
      "440*t",
      "E"
    ],
    "nodeFunctions": [
      "^",
      "-",
      "/",
      "+",
      "*",
      "cos",
      "exp",
      "sin",
      "sqrt",
      "sign",
      "floor",
      "round"
    ]
  },
  {
    "equation": "((((440*t * cos(1)) / (2 / log(2))) - ((sin(t) + (0.5 + t)) ^ ((1 / 0.5) ^ (pi ^ 440*t)))) ^ ((((t / 2) ^ exp(E)) - ((1 ^ 440*t) / floor(1))) - tan((log(t) + floor(220*t)))))",
    "fullEquation": "sin(2 * pi * (((((440*t * cos(1)) / (2 / log(2))) - ((sin(t) + (0.5 + t)) ^ ((1 / 0.5) ^ (pi ^ 440*t)))) ^ ((((t / 2) ^ exp(E)) - ((1 ^ 440*t) / floor(1))) - tan((log(t) + floor(220*t)))))))",
    "friendlyName": "Bwvvvtp",
    "id": "8B5-5:97242270707:11906447336267",
    "timestamp": "2025-11-01T22:58:42.431Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "440*t",
      "2",
      "1",
      "t",
      "0.5",
      "pi",
      "E",
      "220*t"
    ],
    "nodeFunctions": [
      "^",
      "-",
      "/",
      "tan",
      "*",
      "+",
      "cos",
      "log",
      "sin",
      "exp",
      "floor"
    ]
  },
  {
    "equation": "((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))",
    "fullEquation": "sin(2 * pi * (((((0.5 + exp(2)) / (1 / sqrt(440*t))) + ((log(220*t) ^ (pi * 2)) ^ ((E / 440*t) / (pi * E)))) + ((((E - 220*t) ^ sqrt(1)) + ((0.5 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))))",
    "friendlyName": "BumWooWoooo",
    "id": "8B5-5:97242270707:4667293375846",
    "timestamp": "2025-11-01T22:57:56.445Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "0.5",
      "1",
      "2",
      "440*t",
      "220*t",
      "pi",
      "E"
    ],
    "nodeFunctions": [
      "+",
      "/",
      "^",
      "cos",
      "*",
      "exp",
      "sqrt",
      "log",
      "-",
      "sign",
      "abs"
    ]
  },
  {
    "equation": "((((0.5 + exp(pi)) / (1 * sqrt(2))) ^ ((exp(440*t) / (t + 1)) * ((t / t) / (pi - E)))) + ((((E + 220*t) ^ sqrt(E)) + ((1 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))",
    "fullEquation": "sin(2 * pi * (((((0.5 + exp(pi)) / (1 * sqrt(2))) ^ ((exp(440*t) / (t + 1)) * ((t / t) / (pi - E)))) + ((((E + 220*t) ^ sqrt(E)) + ((1 * 1) * sign(pi))) + cos((abs(0.5) * sign(1)))))))",
    "friendlyName": "ShortTut",
    "id": "8B5-5:97242270707:4667293375846",
    "timestamp": "2025-11-01T22:53:29.616Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "0.5",
      "1",
      "pi",
      "2",
      "440*t",
      "t",
      "E",
      "220*t"
    ],
    "nodeFunctions": [
      "+",
      "^",
      "/",
      "*",
      "cos",
      "exp",
      "sqrt",
      "-",
      "sign",
      "abs"
    ]
  },
  {
    "equation": "((((220*t / tan(2)) - (pi - tan(E))) * ((floor(0.5) + (0.5 * 1)) * ((0.5 ^ 0.5) ^ (0.5 * pi)))) + ((((440*t - 220*t) * sign(220*t)) * ((220*t * 1) - cos(440*t))) - log((sin(220*t) / sin(2)))))",
    "fullEquation": "sin(2 * pi * (((((220*t / tan(2)) - (pi - tan(E))) * ((floor(0.5) + (0.5 * 1)) * ((0.5 ^ 0.5) ^ (0.5 * pi)))) + ((((440*t - 220*t) * sign(220*t)) * ((220*t * 1) - cos(440*t))) - log((sin(220*t) / sin(2)))))))",
    "friendlyName": "IncreasingPlft",
    "id": "8B5-5:97242270707:4667293375845",
    "timestamp": "2025-11-01T22:53:20.947Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "220*t",
      "pi",
      "2",
      "E",
      "0.5",
      "1",
      "440*t"
    ],
    "nodeFunctions": [
      "+",
      "*",
      "-",
      "log",
      "/",
      "^",
      "tan",
      "floor",
      "sign",
      "cos",
      "sin"
    ]
  },
  {
    "equation": "((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))",
    "fullEquation": "sin(2 * pi * (((((1 - cos(E)) / (220*t + round(440*t))) + ((tan(E) - (pi ^ 1)) * ((t ^ t) + (t * pi)))) + ((((pi * t) + sign(0.5)) ^ ((E / 0.5) - abs(1))) / sign((sqrt(E) ^ exp(220*t)))))))",
    "friendlyName": "PftWaAAEEEE",
    "id": "8B5-5:97242270707:4667293375844",
    "timestamp": "2025-11-01T22:53:13.673Z",
    "depth": 6,
    "width": 17,
    "leaves": 19,
    "nodes": 45,
    "leafValues": [
      "1",
      "220*t",
      "E",
      "440*t",
      "pi",
      "t",
      "0.5"
    ],
    "nodeFunctions": [
      "+",
      "/",
      "*",
      "^",
      "sign",
      "-",
      "cos",
      "round",
      "tan",
      "abs",
      "sqrt",
      "exp"
    ]
  },
  {
    "equation": "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))",
    "fullEquation": "sin(2 * pi * (((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((exp(pi) ^ t))))))",
    "friendlyName": "ChuwuwuwuwWaaAAwww",
    "id": "8B5-5:97242270706:4",
    "timestamp": "2025-11-01T22:52:05.739Z",
    "depth": 6,
    "width": 16,
    "leaves": 19,
    "nodes": 44,
    "leafValues": [
      "0.5",
      "E",
      "t",
      "2",
      "pi",
      "440*t",
      "1",
      "220*t"
    ],
    "nodeFunctions": [
      "+",
      "*",
      "-",
      "^",
      "cos",
      "/",
      "ceil",
      "tan",
      "sin",
      "sqrt",
      "exp"
    ]
  },
  {
    "equation": "((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((E ^ tan(t)))))",
    "fullEquation": "sin(2 * pi * (((((0.5 + ceil(2)) ^ (E / tan(pi))) * ((sin(E) / (0.5 / t)) ^ ((t - 440*t) - (2 * E)))) + ((((1 * 1) + sqrt(2)) * ((1 / 220*t) / sin(220*t))) - cos((E ^ tan(t)))))))",
    "friendlyName": "DropRepeat2Flood",
    "id": "8B5-5:97242270703:4",
    "timestamp": "2025-11-01T22:51:51.486Z",
    "depth": 6,
    "width": 16,
    "leaves": 19,
    "nodes": 44,
    "leafValues": [
      "0.5",
      "E",
      "2",
      "pi",
      "t",
      "440*t",
      "1",
      "220*t"
    ],
    "nodeFunctions": [
      "+",
      "*",
      "-",
      "^",
      "cos",
      "/",
      "ceil",
      "tan",
      "sin",
      "sqrt"
    ]
  },
  {
    "equation": "((((0.5 ^ 1) + ((440*t ^ 2) - (440*t + 2))) * ((sin(t) - E) * (pi + round(1)))) + (((log(0.5) + 0.5) + sqrt(0.5)) + cos((1 / exp(t)))))",
    "fullEquation": "sin(2 * pi * (((((0.5 ^ 1) + ((440*t ^ 2) - (440*t + 2))) * ((sin(t) - E) * (pi + round(1)))) + (((log(0.5) + 0.5) + sqrt(0.5)) + cos((1 / exp(t)))))))",
    "friendlyName": "ChewWreeee",
    "id": "8B5-5:93793163811:1",
    "timestamp": "2025-11-01T22:51:31.210Z",
    "depth": 6,
    "width": 13,
    "leaves": 15,
    "nodes": 35,
    "leafValues": [
      "0.5",
      "1",
      "E",
      "pi",
      "440*t",
      "2",
      "t"
    ],
    "nodeFunctions": [
      "+",
      "*",
      "cos",
      "^",
      "-",
      "sqrt",
      "/",
      "sin",
      "round",
      "log",
      "exp"
    ]
  },
  {
    "equation": "((round(abs(pi)) - sin(ceil(1))) + ((cos(440*t) ^ t) - t))",
    "fullEquation": "sin(2 * pi * (((round(abs(pi)) - sin(ceil(1))) + ((cos(440*t) ^ t) - t))))",
    "friendlyName": "Bwaowawawa",
    "id": "8B5-4:139633:6",
    "timestamp": "2025-11-01T22:50:44.446Z",
    "depth": 5,
    "width": 4,
    "leaves": 5,
    "nodes": 14,
    "leafValues": [
      "t",
      "pi",
      "1",
      "440*t"
    ],
    "nodeFunctions": [
      "+",
      "-",
      "round",
      "sin",
      "^",
      "abs",
      "ceil",
      "cos"
    ]
  },
  {
    "equation": "(log((log(220*t) / round(440*t))) + log((log(220*t) / round(440*t))))",
    "fullEquation": "sin(2 * pi * ((log((log(220*t) / round(440*t))) + log((log(220*t) / round(440*t))))))",
    "friendlyName": "PzingIngIngIng",
    "id": "9B5-3:77:1",
    "timestamp": "2025-11-01T22:47:14.206Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "(log(220*t) / round(440*t))"
    ],
    "nodeFunctions": [
      "+",
      "log"
    ]
  },
  {
    "equation": "(log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))",
    "fullEquation": "sin(2 * pi * ((log((log(220*t) / round(440*t))) - sin((log(220*t) / round(440*t))))))",
    "friendlyName": "PingIngIngIng",
    "id": "9B5-3:77:1",
    "timestamp": "2025-11-01T22:46:39.567Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "(log(220*t) / round(440*t))"
    ],
    "nodeFunctions": [
      "-",
      "log",
      "sin"
    ]
  },
  {
    "equation": "(log(220*t) / round(440*t))",
    "fullEquation": "sin(2 * pi * ((log(220*t) / round(440*t))))",
    "friendlyName": "ShortStrum",
    "id": "8B5-3:77:1",
    "timestamp": "2025-11-01T22:44:58.461Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "220*t",
      "440*t"
    ],
    "nodeFunctions": [
      "/",
      "log",
      "round"
    ]
  },
  {
    "equation": "cos(log(cos(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi)))))))",
    "fullEquation": "sin(2 * pi * (cos(log(cos(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi)))))))))",
    "friendlyName": "3ProgressiveHums",
    "id": "DB5-7:77:1",
    "timestamp": "2025-11-01T22:36:57.962Z",
    "depth": 8,
    "width": 3,
    "leaves": 4,
    "nodes": 12,
    "leafValues": [
      "(abs(round(0.5)) * (t / cos(440*t)))",
      "pi"
    ],
    "nodeFunctions": [
      "cos",
      "log",
      "ceil",
      "^",
      "+",
      "-"
    ]
  },
  {
    "equation": "cos(log(sin(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi)))))))",
    "fullEquation": "sin(2 * pi * (cos(log(sin(ceil(((abs(round(0.5)) * (t / cos(440*t))) ^ ((pi - pi) + cos(pi)))))))))",
    "friendlyName": "",
    "id": "DB5-7:77:1",
    "timestamp": "2025-11-01T22:36:12.657Z",
    "depth": 8,
    "width": 3,
    "leaves": 4,
    "nodes": 12,
    "leafValues": [
      "(abs(round(0.5)) * (t / cos(440*t)))",
      "pi"
    ],
    "nodeFunctions": [
      "cos",
      "log",
      "sin",
      "ceil",
      "^",
      "+",
      "-"
    ]
  },
  {
    "equation": "sin(sqrt(sign(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))",
    "fullEquation": "sin(2 * pi * (sin(sqrt(sign(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))))",
    "friendlyName": "FasterPhasers2",
    "id": "DB5-7:77:1",
    "timestamp": "2025-11-01T22:35:16.859Z",
    "depth": 8,
    "width": 3,
    "leaves": 4,
    "nodes": 12,
    "leafValues": [
      "220*t",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))",
      "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))"
    ],
    "nodeFunctions": [
      "sin",
      "sqrt",
      "sign",
      "ceil",
      "/",
      "+",
      "cos"
    ]
  },
  {
    "equation": "sin(sqrt(log(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))",
    "fullEquation": "sin(2 * pi * (sin(sqrt(log(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))))",
    "friendlyName": "FasterPhasers",
    "id": "DB5-7:77:1",
    "timestamp": "2025-11-01T22:34:57.062Z",
    "depth": 8,
    "width": 3,
    "leaves": 4,
    "nodes": 12,
    "leafValues": [
      "220*t",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))",
      "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))"
    ],
    "nodeFunctions": [
      "sin",
      "sqrt",
      "log",
      "ceil",
      "/",
      "+",
      "cos"
    ]
  },
  {
    "equation": "sin(sqrt(tan(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))",
    "fullEquation": "sin(2 * pi * (sin(sqrt(tan(ceil((220*t / ((sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi))))) + sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) / cos(cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t))))))))))))))",
    "friendlyName": "MixedStatic",
    "id": "DB5-7:77:1",
    "timestamp": "2025-11-01T22:34:39.721Z",
    "depth": 8,
    "width": 3,
    "leaves": 4,
    "nodes": 12,
    "leafValues": [
      "220*t",
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))",
      "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))"
    ],
    "nodeFunctions": [
      "sin",
      "sqrt",
      "tan",
      "ceil",
      "/",
      "+",
      "cos"
    ]
  },
  {
    "equation": "(sqrt(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) * sin(E))",
    "fullEquation": "sin(2 * pi * ((sqrt(sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))) * sin(E))))",
    "friendlyName": "BwawaawaaWaWaWa",
    "id": "CB5-3:77:1",
    "timestamp": "2025-11-01T22:33:08.276Z",
    "depth": 3,
    "width": 2,
    "leaves": 2,
    "nodes": 5,
    "leafValues": [
      "sin(sqrt(((abs(round(0.5)) * (t / cos(440*t))) + ((1 * (abs(round(0.5)) * (t / cos(440*t)))) * (220*t ^ pi)))))",
      "E"
    ],
    "nodeFunctions": [
      "*",
      "sqrt",
      "sin"
    ]
  },
  {
    "equation": "cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))",
    "fullEquation": "sin(2 * pi * (cos(tan((0.5 + ((440*t - (abs(round(0.5)) * (t / cos(440*t)))) * (pi / 220*t)))))))",
    "friendlyName": "",
    "id": "AB5-5:77:1",
    "timestamp": "2025-11-01T22:32:37.102Z"
  },
  {
    "equation": "(ceil(t) / sqrt((abs(round(0.5)) * (t / cos(440*t)))))",
    "fullEquation": "sin(2 * pi * ((ceil(t) / sqrt((abs(round(0.5)) * (t / cos(440*t)))))))",
    "friendlyName": "DwummmUmmm",
    "id": "9B5-3:77:1",
    "timestamp": "2025-11-01T22:17:37.045Z"
  },
  {
    "equation": "(abs(round(0.5)) * (t / cos(440*t)))",
    "fullEquation": "sin(2 * pi * ((abs(round(0.5)) * (t / cos(440*t)))))",
    "friendlyName": "(abs(round0.5)*(t/cos440*t))",
    "id": "8B5-3:237:1",
    "timestamp": "2025-11-01T21:45:40.820Z"
  }
]
Previous
Previous

Music Theory References

Next
Next

Asking As King means talking to QGG